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Abstract
Ignorance can be deadly, making learning essential to

survival. However, learning also needs to be adjusted ac-
cording to the prevailing uncertainty – with faster change
or, in typical cases, a higher learning rate (LR), in environ-
ments that change quickly and a lower learning rate when
the environment’s latent state does not change. Fail-
ing to adjust the LR flexibly can lead to learning impair-
ments – an affliction somewhat inconsistently found to
affect behavior, particularly in individuals with high trait
anxiety. We conducted five experiments (N=550 partici-
pants) using an online game-based variant of a predic-
tive inference task to investigate whether high trait anx-
iety is associated with impaired LR adjustment. While
finding model-based and model-agnostic evidence of
uncertainty-related LR modulation across individuals, we
did not find any relations to trait anxiety. We obtained
consistent results in a control experiment with a binary
reversal learning task. Using Bayes factors to test the
null hypothesis, our results suggest that trait anxiety is
not systematically associated with inflexible learning in
uncertain and changing environments.
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Introduction
Learning about environments when uncertain is essential to
decision-making and survival. Environments generate un-

certainty in two critical ways: inherent irreducible outcome
variability (risk) and unpredictable changes that reflect a true
change in the latent state of the environment (the rate of which
is quantified as volatility) (Behrens et al., 2007; Yu & Dayan,
2005).

From a conventional (albeit sometimes approximate)
Bayesian perspective, uncertainty should regulate the extent
of learning from prediction errors (PEs; the difference between
newly observed outcomes and predictions; Bruckner et al.,
2022; Nassar et al., 2010). How much is learned is quan-
tified by the learning rate (LR), where completely replacing
predictions with the last outcome corresponds to LR=1; and
ignoring the last outcome corresponds to LR=0. When out-
comes are risky, large PEs happen by chance and should be
suppressed by setting a low LR. By contrast, in volatile envi-
ronments, large PEs suggest potential change, which should
be accommodated by having a high LR.

Several studies have suggested that clinical and trait anx-
iety are associated with an inability to adjust the LR flexibly
(Aylward et al., 2019; Browning et al., 2015; Gagne et al.,
2020; Wise & Dolan, 2020), or with faster switching between
states (Zika et al., 2023). However, the exact relationship
is not consistent across studies. Some studies found that
anxious individuals use higher LRs, especially for negative
PEs, leading to an overestimation of the probability of aversive
events (Aylward et al., 2019; Piray & Daw, 2021). Other stud-
ies suggested that individuals with anxiety and depression ad-
just their LRs less flexibly to volatile environments (Browning



Figure 1: Predator task and results a) The predator task is a gamified predictive inference task, where participants save
themselves from an attacking predator by placing a flame in its path. b) Predator attack locations are usually centered around a
common position, but the exact location varies according to inherent risk and volatility in the environment (first panel). The model
computes prediction errors (second panel) and scales them adaptively to update its predictions (bottom panel). c) Example data
from one participant, showing the fits obtained with fixed and adaptive LRs. d) Regression analyses indicate that participants
use a mixture of fixed and adaptive LRs to scale the influence of PEs on belief updating. e) Results from the predator task show
no systematic association between trait anxiety and LRs. f) LRs in stable and volatile blocks of the binary reversal learning task.
g) No systematic association between LR adaptation and trait anxiety scores in the reversal learning task.

et al., 2015; Gagne et al., 2020). Finally, another group of
studies failed to find any anxiety-related learning impairments
(Schindler et al., 2022; Ting et al., 2022).

Here, we systematically investigated whether higher trait
anxiety is associated with impaired LR adjustment across five
experiments. We tested the three hypotheses that trait anxi-
ety is associated (H1) with higher overall LRs, (H2) impaired
adjustments to environmental changes, or (H3) is not sys-
tematically linked to the LR. For this, we designed an online
game-based variant of a predictive inference task (predator
task; Fig. 1a) (Nassar et al., 2019, 2021; Vaghi et al., 2017).
Participants defended themselves against an attacking preda-
tor whose location varied unpredictably on a circle (ranging
from 1 to 360 degrees) due to risk and occasional truly latent
changes. Attack locations were typically clustered around a
mean position (mean of a Gaussian), with risk represented by
the distribution’s standard deviation. The distribution’s mean
occasionally shifted, introducing unpredictable environmental
changes (volatility) (Fig. 1b). We conducted five experiments
with varying levels of risk (high/low random outcome variabil-
ity) and volatility (high/low frequency of change). Participants
(N=550) were recruited through Prolific (age 18-40) and com-
pleted a battery of questionnaires, including the State-Trait In-
ventory for Cognitive and Somatic Anxiety (STICSA; Ree et
al., 2008) before starting the task.

We used a regression model to estimate the extent to which
participants relied on adaptive and fixed LRs. The adaptive
LR αt (eq. (1)) was extracted from an approximate Bayesian
changepoint-detection algorithm that learns according to the
principles of an error-correcting delta rule (McGuire et al.,
2014; Nassar et al., 2010, 2019). αt dynamically reflects the
probability of a change point (CPP) given the PE and hazard
rate of change points h (eq. (2)), along with the current sub-
jective estimates of uncertainty σ2

t and risk σ2 encapsulated
by a single term (RU, eq. (3), Fig. 1b):

µt+1 = µt +αt ·PEt where αt =CPPt +RUt · (1−CPPt) (1)

CPPt =
(1/360) ·h

N(PEt ;0,σ2
t +σ2) · (1−h)+(1/360) ·h

(2)

RUt+1 =
σ2

t+1

σ2
t+1 +σ2

(3)

The regression explained belief updates based on a main
effect of PE (β1) and the interaction αt · PE (β2) (Fig. 1c). β1
represents a fixed LR, quantifying participants’ average con-
sideration of PE independent of the Bayesian model terms,
and β2 quantifies adaptive learning. An ideal learner exhibits
β1 = 0 and β2 = 1, i.e., only relies on αt . Both parameters had
moderate to high split-half reliability (rβ1 = 0.78, rβ2 = 0.61).



In a control experiment (N=182), participants additionally
performed a binary reversal learning task (a simplified version
of that in Behrens et al. (2007)) so LRs could be compared
across tasks and to ensure construct validity. The task com-
prised stable blocks with fixed reward probabilities and volatile
blocks where probabilities switched every 20 trials. Partici-
pants’ behavior was best modeled by a canonical Rescorla-
Wagner model with split-half reliability for learning rate and
inverse temperature of rα = 0.49, rβ = 0.35, respectively.

Results
We found that participants used a mixture of fixed and adap-
tive LRs (Fig. 1d). That is, learning was driven by both norma-
tive factors (CPP and RU) and a fixed influence of PEs (which
can be seen as a simplified learning strategy). We subse-
quently applied a linear regression model on the fixed and
adaptive LR coefficients and trait anxiety (STICSA scores).
In this model, we also controlled for age and gender, and
here we show results for data combined across all our stud-
ies (Fig. 1e). We found no significant relationship between
fixed LR and trait anxiety (b=-0.0112, 95% CI=-0.035 to 0.013,
p=0.364, BF10=0.078). Similarly, there was no significant as-
sociation between adaptive LR and trait anxiety (b=0.0027,
95% CI=-0.028 to 0.034, p=0.866, BF10=0.052).

In the binary reversal learning task, we found a signifi-
cant main effect of block type on learning rate (b=0.21, 95%
CI=0.12 to 0.314, p<0.001), with participants having elevated
learning rates in the volatile block compared to the stable block
(Fig. 1f). However, we did not find a significant association be-
tween LR adaptation (∆α=αvolatile−αstable) and trait-anxiety
scores, controlling for age and gender (b=0.0197, 95% CI=-
0.034 to 0.074, p=0.473, BF10=0.107; Fig. 1g).

Discussion and Conclusion
Previous work suggests that trait anxiety affects the regulation
of LRs in uncertain and changing environments, but results
are inconsistent across studies. Across five studies featuring
continuous predictive inference (with good psychometric prop-
erties) and binary reversal learning tasks (with low to moder-
ate split-half reliability), we found no systematic evidence of
impaired LR adaptation in individuals with trait anxiety (in line
with H3, assuming no systematic relationship). It might be
that the effects of trait anxiety show up in specific task set-
tings that we have not tested here or in clinical populations
with pathological anxiety levels; certainly, paying attention to
the psychometric properties of learning tasks (Karvelis et al.,
2023; Loosen et al., 2022) is essential.
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