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Abstract 

 In the last few years, the existence of a pure number sense has been challenged. Recent 

studies suggest that numerosity processing is not only influenced by the number of elements in 

a display but also by continuous magnitudes, such as the size of the elements. The aim of our 

study was to replicate and extend the findings by Gebuis and Reynvoet (Gebuis & Reynvoet, 

2012a), who systematically manipulated different continuous magnitudes either congruently or 

incongruently with discrete numerosity. We were particularly interested in finding the same 

pattern of congruency effects and assess its stability and robustness as this pattern indicates a 

complex influence of continuous magnitudes on numerosity judgements. We did so by showing 

stimuli of different conditions either in separate blocks or mixed together while participants 

solved a dot comparison task. Our results are in line with the notion that discrete number and 

continuous magnitudes are integrated in numerosity judgments by means of a weighing 

process. Moreover, our findings suggest that this integration is modified by the mode of 

presentation (blocked vs. mixed). 

 

Keywords: Approximate Number System, Sensory Integration Theory, dot comparison, 
continuous magnitudes, numerosity 
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1. Introduction 

The concept of numerosity is essential in everyday life. For example, we estimate and 

compare numerosities when we try to choose the shorter queue in the supermarket or when 

we try to pick the plate with more biscuits in the cafeteria. The most prominent theory in 

numerical cognition is the Approximate Number System (ANS). According to this theory, 

humans and animals share an evolutionary ancient system which is responsible for the rapid 

and effortless extraction of numerosities from visual and other sensory scenes (Cantlon, Platt, 

& Brannon, 2009; Feigenson, Dehaene, & Spelke, 2004). In particular, single-cell studies 

have found that number selective neurons in a dedicated fronto-parietal cortical network 

encode numerosity in the primate brain (for a review see Nieder, 2016). Furthermore, 

neuroimaging studies support the existence of the human counterpart of this network (Knops, 

2017; Lyons, Ansari, & Beilock, 2015; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; 

Piazza, Pinel, Le Bihan, & Dehaene, 2007). While behavioural, neuroimaging, 

neurophysiological and computational studies support the existence of the ANS (Cantlon et 

al., 2009; Dehaene & Changeux, 1993; Feigenson et al., 2004; Gallistel & Gelman, 2000; 

Stoianov & Zorzi, 2012; Verguts & Fias, 2004), its exact mechanisms are less clear. In 

particular, it is still an open question whether and how sensory cues influence numerosity 

processing (Leibovich, Katzin, Harel, & Henik, 2016).  

Classic theories of the ANS suggest that numerosity processing occurs independently 

of continuous sensory properties present in the stimuli, i.e. our estimate about the biscuits in 

the cafeteria is not biased by their size or by how densely they are placed on the plate. 

Discrete numerosity, however, is always confounded by continuous magnitudes: considering 

the example above, the total volume of the biscuits will be larger on the plate with more 

pieces, provided that all biscuits are of the same size. However, when the total biscuit volume 
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on both plates are equal, then the size of the biscuits must be smaller on the plate with more 

biscuits. Even though researchers have put considerable effort into developing methods that 

can control the relationship between numerosity and its confounding sensory properties 

(Dehaene, Izard, & Piazza, 2005; Gebuis & Reynvoet, 2011; Salti, Katzin, Katzin, Leibovich, 

& Henik, 2016), there is always a continuous magnitude which correlates – either positively 

or negatively – with numerosity (see for example Smets, Moors, & Reynvoet, 2016). Thus, 

inspired by the ubiquitous nature of sensory properties, in the last few years, attention has 

been shifted to investigating what role non-numerical parameters play in numerosity 

processing. Based on these studies, more recent theories postulate that continuous properties 

influence or might even explain the processes underlying the estimation and comparison of 

large approximate numerosities (Clayton, Inglis, & Gilmore, 2019; Gebuis, Kadosh, & 

Gevers, 2016; Gevers, Kadosh, & Gebuis, 2016; Leibovich, Kallai, & Itamar, 2016; 

Leibovich, Katzin, et al., 2016).  

Thus, on the one hand, numerous studies support pure number sense (Cantlon et al., 

2009; Feigenson et al., 2004; Gallistel & Gelman, 2000; Piazza et al., 2007; Stoianov & 

Zorzi, 2012; Verguts & Fias, 2004) while a growing number of behavioural, 

neurophysiological and neuroimaging studies suggests that continuous sensory properties 

play an important role in numerosity processing (Gebuis & Reynvoet, 2012a, 2012b, 2013; 

Leibovich & Ansari, 2017; Leibovich & Henik, 2014; Salti et al., 2016; Smets, Sasanguie, 

Szücs, & Reynvoet, 2015; Soltész & Szűcs, 2014). Usually, in these experiments participants 

have to solve a dot comparison task in which two dot arrays of varying numerosities are 

presented to them. They are asked to indicate whether the first or the second array had 

contained more dots. Unbeknownst to the participants, continuous magnitudes are 

manipulated to create different congruency conditions. For example, on a congruent trial the 

array with more dots has larger visual cues, i.e. larger sized dots or a larger convex hull 
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(larger contour around the dot array). In contrast, on an incongruent trial, the more numerous 

dot array has smaller visual characteristics, i.e. smaller dots or a smaller convex hull. With 

this method, one can manipulate several continuous magnitudes together in the same 

direction, e.g. dot size and convex hull are both larger on the array with more dots (congruent 

& congruent), or they are both smaller (incongruent & incongruent). The continuous 

magnitudes can also be manipulated in the opposite directions, e.g. larger dot size and a 

smaller convex hull on the array with more dots (congruent & incongruent). It is even 

possible to keep one continuous magnitude constant, while making the other congruent or 

incongruent. For example, the two dot arrays have the same convex hull but the more 

numerous one has larger dots (equated & congruent) or the less numerous one has larger dots 

(equated & incongruent, see also Figure 1). Comparing performance between trials with the 

same numerosity information but different congruency and visual cue manipulation, gives us 

insight into the effects of continuous magnitudes on numerosity processing. Findings of 

experiments which implemented this kind of sensory cue manipulation have raised the 

attention to the relationship between numerosity and its continuous magnitudes and 

questioned the existence of a pure number sense which is independent of continuous 

magnitudes (Gebuis & Reynvoet, 2012a, 2012b; Salti et al., 2016; Smets et al., 2015).  

Sensory Integration Theory provides an alternative approach to the Approximate 

Number System (Gebuis et al., 2016; Gevers et al., 2016). Proponents of this theory claim 

that sensory cues are weighed and integrated during numerosity processing. Rather than 

deriving numerosity independently of sensory cues, during the so called integration procedure 

multiple sensory cues compete with each other in their weight given to the numerosity 

estimate. For example, if there is a stimulus pair which differs to a larger extent in terms of 

convex hull than in terms of dot diameter size, more weight might be given to the convex 

hull. This mechanism can explain the pattern of congruency effects found by Gebuis & 
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Reynvoet (2012a). Specifically, they implemented the visual cue manipulation method 

described above and created four different visual cue conditions. In two conditions, only a 

single visual cue (convex hull) or a set of visual cues (average dot diameter, aggregate 

surface of the dots and density, from now on referred to as diameter) were manipulated and 

they were either congruent or incongruent with numerosity. In the two other conditions, both 

visual cues were manipulated together, although in different directions (see Methods section 

for more detail). Consequently, neither convex hull nor any other visual cues were 

consistently informative since they did not correlate with numerosity throughout the task. 

Interestingly, Gebuis & Reynvoet (2012a) found opposite congruency effects in those two 

conditions, in which a single visual cue was manipulated. In the convex hull condition, 

performance was better when more dots occupied a larger area (other visual cues were 

equated). In the diameter condition the congruency effect reversed. Namely, performance was 

better when the array with more dots had a smaller average diameter, smaller aggregate 

surface and a smaller density (convex hull was equated). When all visual cues were 

manipulated in the same direction, the opposite effect of convex hull and the other sensory 

cues cancelled each other out, resulting in the absence of a congruency effect. However, 

when convex hull and diameter were manipulated in the opposite direction, their differential 

effect on the performance led to an augmented congruency effect. The authors argued that 

this pattern of findings support the idea that participants integrate various types of continuous 

dimensions, possibly by means of an additive weighing process, even when they are 

uninformative about numerosity.  

 Single cell studies suggest that neurons in the primate brain are either tuned to 

discrete numerosity or continuous magnitude, or they encode both discrete and continuous 

stimulus features. Moreover, these three types of neurons were found to be intermingled in 

the monkey parietal cortex (for example Tudusciuc & Nieder, 2009, for an overview see 
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Nieder, 2016). These findings are in line with human neuroimaging studies which showed 

overlapping but also segregated activations in response to continuous magnitude and 

numerosity in the human parietal cortex (Dormal & Pesenti, 2009; Kadosh et al., 2005; Pinel, 

Piazza, Le Bihan, & Dehaene, 2004). So the notion that numerosity and continuous 

magnitude are integrated seems to be supported by single cell and human neuroimaging 

studies. However, if there is an interaction between numerosity and continuous magnitudes 

on the basic neuronal level, then this interaction should be consistent across different 

continuous magnitudes. That is, some cells should respond to larger numerosity and larger 

convex hull while other cells should respond to larger numerosity as well as larger diameter 

and not smaller diameter. In line with this hypothesis, certain neurons in the monkey 

prefrontal cortex responded not only when monkeys had to select the more numerous but also 

when they had to select the larger stimulus. Another group of neurons responded when 

monkeys had to select the less numerous and the smaller stimulus. Thus, the congruency 

effect has been shown at a basic neural level, meaning that there are cells which are involved 

in both “greater” and “larger” responses and other cells that are involved in both “fewer” and 

“smaller” responses (Eiselt & Nieder, 2013). Taken together, these findings might provide an 

explanation of the interference effect between numerosity and continuous magnitudes found 

in behavioural investigations (Gebuis, Kenemans, de Haan, & van der Smagt, 2010; Szűcs & 

Soltész, 2007). However, the reversed congruency effect in the diameter condition found by 

Gebuis & Reynvoet (2012a), is difficult to reconcile with these findings because they suggest 

that displays with larger dot diameter should be judged as more numerous. 

Further studies, which address the role of continuous magnitudes on numerosity 

processing, may add to our understanding about the interplay between discrete numerosity 

and continuous sensory cues.  For example, it has been shown that the effect of continuous 

magnitudes on dot comparison performance can be altered by changes in instructions, task 
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difficulty, stimulus duration and task context (Leibovich, Henik, & Salti, 2015; Leibovich-

Raveh, Stein, Henik, & Salti, 2018). Thus, the weights that are given to continuous 

magnitudes are not static but seem to depend on various experimental factors. As some of 

these factors (such as presentation time) affect bottom-up processing whereas other factors 

(such as instructions) affect top-down processing, weights seem to depend on both top-down 

and bottom-up processes as well as on their interaction. As a result, sensory cues are 

processed in a highly flexible and adaptive fashion. Despite this growing body of research, it 

is still an open question, how exactly the weights of the continuous magnitudes are adjusted. 

For example, it is unclear whether the weights are adjusted within trials depending mainly on 

the stimulus features in the current trial or the weights are rather adapted gradually across 

many trials. The latter idea is supported by a study by Odic et al. who found that performance 

on a dot comparison task was influenced by trial order (Odic, Hock, & Halberda, 2014). 

Participants who were presented with easy trials first performed better on the task than 

participants who received difficult trials first. Thus, comparison performance can be altered 

through the history of previous trials. 

If the weighing process indeed depends on trial history, it should make a difference 

whether trials of the same type are presented consecutively (blocked presentation) or whether 

different trials types are mixed together (mixed presentation). In the original study, Gebuis & 

Reynvoet (2012a) manipulated the sensory characteristics of the two dot arrays in a block-

wise fashion, hence trials of the same type were shown consecutively to the participants. For 

example, in a certain block, the dot diameter of stimulus pairs was always manipulated in the 

same way (either congruently or incongruently to numerosity) whereas convex hull remained 

constant. In another block, it was the opposite: the convex hull of stimulus pairs was 

manipulated in the same way (congruent or incongruent), while dot diameter remained 

constant. But, assuming that the weighing process is flexible and adaptive as suggested by 
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Leibovich et al., and also assuming that trial history has an effect on dot comparison 

performance as suggested by Odic et al., it is possible that the blocked presentation mode 

influences the weights given to the continuous magnitudes in a particular way (Leibovich et 

al., 2015; Leibovich-Raveh et al., 2018; Odic et al., 2014). For example, if during the entire 

block the two stimuli in a trial differ with regard to convex hull whereas the other continuous 

cues are kept constant, the weight assigned to convex hull may increase or decrease 

compared to the weights of other continuous magnitudes. Hence, the specific pattern of 

congruency effect may at least partially be accounted for by the block-wise presentation 

mode. It seems even possible that the reversed congruency effect (that corresponds to a 

negative weight) in the diameter condition is merely a result of the blocked presentation 

mode and that it is not found under altered circumstances, e.g. when different trial types are 

mixed together. Therefore, we would like to investigate whether changing the trial history 

can alter the interaction between continuous magnitudes and numerosity and thus change the 

pattern of congruency effects reported by Gebuis & Reynvoet (2012a). 

In sum, our study has two aims. First, we examine whether changing the trial history 

by mixing trials of different types can alter the pattern of congruency effects shown by 

Gebuis & Reynvoet (2012a). Second, we are particularly interested in the reversed 

congruency effect in the diameter condition because this effect is difficult to reconcile with 

single-cell studies which would suggest the opposite. Thus, we would like to investigate 

whether this effect remains stable when the presentation method is changed from blocked to 

mixed. To this end, we presented participants with different trials types in a mixed fashion 

and compared it with the exact replication of the original study (Gebuis & Reynvoet, 2012a).  

2. Methods 

2.1 Participants 
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 Data were collected from 34 individuals (6 males, age: M=26.69, SD=5.96, range: 18 

years 9 months – 36 years 5 months). All participants had normal or corrected-to-normal 

vision. They gave written informed consent and received course credit for their participation. 

Three participants (all of them females) were excluded from the data analysis because of low 

performance on the Dyscalculia Screener (Butterworth, 2003, see below). In total, data from 

31 participants were analysed (6 males, age: M=26.26, SD=5.99, range: 18 years 9 months – 

36 years 5 months). 

 Gebuis and Reynvoet (2012a) reported a congruency effect for convex hull with an 

effect size of Cohen’s dz=1.54 and a reversed congruency effect for diameter with an effect 

size of Cohen’s dz=.86 (calculated as Cohen’s dz= 𝑡𝑡/√𝑛𝑛, according to Rosenthal, 1991). 

Power to find these effects with N=31 subjects (α = .05) were 1-β = 1 and .99, respectively 

(Faul, Erdfelder, Lang, & Buchner, 2007). A sample size of N=31 allows to detect possible 

moderations of congruency effects by presentation mode with an effect size of Cohen’s dz 

=.52 (i.e. medium sized-effect according to Cohen, 1988). 

 

2.2 Stimuli and Tasks 

2.2.1. Dot comparison Task. Stimuli were pairs of dot arrays which were presented 

consecutively to the participants. Their task was to indicate with a button press whether the 

first or the second image had contained more dots. Dot arrays were constructed the same way 

as those used by Gebuis & Reynvoet (2012a). White dots were presented on a dark grey 

background, dot size ranged from 0.11 degrees to 0.79 degrees in visual angle. Four visual 

properties were manipulated which are thought to influence numerosity judgements: (1) 

convex hull (area within the smallest contour around the dot array), (2) aggregate surface of 

the dots, (3) average dot diameter and (4) density (aggregate surface divided by convex hull).  
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It is important to note that three of these visual properties, namely aggregate surface, 

average diameter and density, are highly related. Therefore, it was not possible to 

differentiate between them. For example, if average dot diameter is increased, aggregate 

surface and density will also automatically increase while convex hull can remain constant. 

For this reason, aggregate surface, average dot diameter and density were manipulated 

together in one condition, which will be referred to as diameter in/congruent condition 

hereafter.  

The manipulated visual cues could either be congruent or incongruent with 

numerosity. A stimulus was considered congruent if the visual property in question was 

greater for the array with more dots. In the (1) convex hull in/congruent condition the visual 

property manipulated was the area within the smallest contour around the dot array whereas 

density, aggregate surface and average diameter were kept equal across numerosities and 

congruency conditions. Thus, on convex hull congruent trials the array with more dots was 

associated with greater convex hull around the dot array. In contrast, on convex hull 

incongruent trials, arrays containing a larger number of dots had a smaller convex hull. 

Density, aggregate surface and average diameter were kept constant in this condition. That is, 

congruent and incongruent trials did not differ from each other with regard to these 

properties. In the (2) diameter in/congruent condition the convex hull was kept constant 

while the density, the average diameter of the dots and their aggregate surface were either 

congruent or incongruent with numerosity. In the (3) fully in/congruent condition both 

diameter and convex hull were manipulated together and they could be either congruent or 

incongruent with numerosity. As a result, on fully congruent trials all visual cues were larger 

in stimuli containing more dots. In contrast, on fully incongruent trials the more numerous 

dot arrays were associated with smaller visual cues. In the (4) partially in/congruent 

condition diameter and convex hull were manipulated in opposite ways: when convex hull 
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was incongruent, diameter, density and aggregate surface were congruent and vice versa. So 

in short, partially congruent trials were congruent in diameter (as well as related visual cues) 

and incongruent in convex hull. Whereas, partially incongruent trials were incongruent in 

diameter (as well as related visual cues) and congruent in convex hull. 

Each condition contained 192 trials half of which were congruent and the other half 

were incongruent (96 trials each). Every trial consisted of two dot arrays presented 

consecutively. One of the dot arrays always contained 24 dots, the other dot array could 

contain 16, 18, 20, 29, 32, 36 dots resulting in six different numerosity combinations 

equivalent to three different ratios. The ratios were 1:2, 1:3, 1:5 calculated as (larger number 

– smaller number)/smaller number. Trials within each condition were counterbalanced with 

respect to congruency, numerosity combinations and the number of dots in the first array. 

It is important to note that as in the original study, the visual cues were not 

informative of numerosity, neither within a single cue manipulation condition nor throughout 

the whole task. Within each visual cue manipulation condition, half of the trials were 

congruent and the other half were incongruent. Moreover, the differences in continuous 

magnitudes and numerosity between stimulus pairs did not significantly correlate (R<0.1, 

p>0.05). Only in the convex hull in/congruent condition the aggregate surface was 

informative, since it was always larger for the more numerous dot array. It was not possible 

to control for this visual cue without making other cues informative. However, the difference 

in aggregate surface occurred in the same direction on congruent and incongruent trials. So 

any difference between trials with different congruency cannot be explained by participants 

utilizing aggregate surface as a cue to infer numerosity (Figure 2). 

2.2.2. Dyscalculia Screener. The Dyscalculia Screener is a standardized test originally 

developed to assess mathematical abilities in children between the age of 6 and 14 
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(Butterworth, 2003). Standardized scores have been interpolated for adults and successfully 

used to assess mathematical proficiency in adult populations (Cappelletti et al., 2014; 

Cappelletti, Freeman, & Butterworth, 2011; Cappelletti & Price, 2014). The test comprises 

four item-timed tasks which are divided into two subscales. The capacity subscale involves a 

dot enumeration task and a number comparison task, the achievement subscale contains two 

verification tasks (mathematical addition and multiplication). Every subtask starts with 

detailed instructions and several practice trials with feedback. For the actual test trials no 

feedback is provided. Based on participants’ reaction time and accuracy, individual Stanine 

Scores and Standard Age Scores can be computed. In previous studies, adult participants with 

below average results on either of the tasks of the Capacity Subscale (Dot Enumeration 

and/or Numerical Stroop) have been classified as dyscalculic and this result has been 

confirmed by further diagnostic tools (Cappelletti et al., 2014, 2011; Cappelletti & Price, 

2014). Since it is still unclear whether visual cues have the same or different effect on 

participants with low mathematical proficiency (as raised by Leibovich, Katzin, et al., 2016), 

we excluded participants who had a stanine score equal to or lower than 3 on either of the two 

tests of the Capacity Subscale.  

2.3 Procedure 

First, participants completed a dot comparison task with two different presentation 

modes. In both presentation modes the same dot arrays were shown to the participants, the 

only difference was whether trials of different types were presented in a blocked or mixed 

fashion. During blocked presentation mode, the four visual cue conditions were presented in 

separate blocks and their order was counterbalanced across participants. This part of the 

experiment is the replication of the original study by Gebuis & Reynvoet (2012a). During 

mixed presentation mode, trials of all four conditions randomly alternated. The order of the 

presentation mode (blocked and mixed) was also counterbalanced across participants. The 
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experiment started with detailed instructions and six practice trials with feedback. After the 

practice trials no feedback was provided to the participants. Each trial began with a green 

fixation cross presented for 500 ms on the computer screen followed by a dot array for 300 

ms, a blank screen for 500 ms and the second dot array for 300 ms. Then a red fixation cross 

appeared on the screen and remained visible until participants pressed one of the response 

buttons (Figure 3). They were instructed to press the left-CTRL button if the first array was 

more numerous and the right-CTRL button if the second dot array was more numerous. They 

were asked to respond as quickly and as accurately as possible. One presentation mode 

consisted of four blocks each with 192 trials. In total, each participant received six practice 

trials and 1536 experimental trials (192 trials per block × 4 blocks × 2 presentation modes). It 

should be noted that participants were not aware of the different presentation modes. From 

their point of view, they completed eight blocks of the same dot comparison task. Hence, 

instructions and practice trials were presented to them only once, at the beginning of the 

experiment. They had the opportunity to take a break after each block. After the dot 

comparison task they completed the Dyscalculia Screener. The duration of the experiment 

was 1.5-2 hours in total. 

2.4 Statistical analysis 

We calculated the percentage of correct responses for each presentation mode 

(blocked versus mixed), type of visual cue manipulation (1: convex hull, 2: diameter, 3: fully, 

4: partially in/congruent) and congruency (congruent versus incongruent). In order to 

determine whether we could replicate the original results and whether there was a significant 

difference between the blocked and mixed presentation modes, accuracy data were subjected 

to a 3-way repeated measures ANOVA with factors presentation mode (2), visual cue 

condition (4) and congruency (2). We report Greenhouse-Geisser corrected results, whenever 

the assumption of sphericity is violated. 
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3. Results 

 The analysis of variance revealed a main effect of presentation mode (F(1,30)=4.69, 

p<.05, 𝜂𝜂𝑝𝑝2=.14), a main effect of visual cue condition (F(1.81,54.29)=27.56, p<.001, 𝜂𝜂𝑝𝑝2=.48) 

and a main effect of congruency (F(1,30)=21.25, p<.001, 𝜂𝜂𝑝𝑝2=.42). Main effects were 

qualified by a significant two-way interaction between visual cue condition and congruency 

(F(1.66,49.80)=59.45, p<.001, 𝜂𝜂𝑝𝑝2=.66) and a three-way interaction between presentation 

mode, visual cue condition and congruency (F(2.04,61.33)=6.99, p=.002, 𝜂𝜂𝑝𝑝2=0.19).  

 To follow-up the 3-way interaction, we conducted a 2-way analysis of variance with 

the factors visual cue conditions (4) and congruency (2), separately for the blocked and 

mixed presentation modes. Both ANOVAs revealed the same results: a main effect of visual 

cue condition (blocked: F(2.22,66.46)=21.01, p<.001, 𝜂𝜂𝑝𝑝2=0.41, mixed: F(2.10,62.94)=21.24, 

p<.001, 𝜂𝜂𝑝𝑝2=0.42), a main effect of congruency (blocked: F(1,30)=21.85, p<.001, 𝜂𝜂𝑝𝑝2=0.42, 

mixed: F(1,30)=19.65, p<.001, 𝜂𝜂𝑝𝑝2=0.40) and a significant 2-way interaction between visual cue 

condition and congruency (blocked: F(2.05,61.55)=43.68, p<.001, 𝜂𝜂𝑝𝑝2=.59; mixed: 

F(1.51,45.18)=62.13, p<.001, 𝜂𝜂𝑝𝑝2=.67) (Figure 4). Since the pattern of congruency effects is 

the same in both presentation modes (see Figure 4), the three-way interaction of presentation 

mode × visual cue conditions × congruency dominantly reflects a moderation in the 

congruency effects. Therefore, we report four two-way ANOVAs ([blocked vs. mixed] x 

[congruent vs. incongruent]) for every visual cue condition. We also report follow up t-tests 

for the single congruency effects (congruent vs. incongruent), separately for each 

presentation mode and visual cue condition.  

3.1 Convex hull in/congruent condition 
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 The 2-way analysis of variance conducted for the convex hull in/congruent visual cue 

condition revealed a significant main effect of congruency (F(1, 30)=88.52, p<.001, 𝜂𝜂𝑝𝑝2=.75) 

and a significant interaction of presentation mode and congruency (F(1,30)=19.55, p<0.001, 

𝜂𝜂𝑝𝑝2=.40). The main effect of congruency was due to better performance on congruent trials 

(M=87.2, SD=1.26) than on incongruent trials (M=74.65, SD=1.72, see also Figure 4). 

Participants made significantly more correct responses when the array with more dots had a 

larger convex hull than when it had a smaller convex hull (all other visual cues equated). The 

interaction of presentation mode and congruency was due to a significantly larger congruency 

effect in the mixed presentation mode (congruent: M=88.71, SD=6.93, incongruent: 

M=72.45, SD=11.31) than in the blocked presentation mode (congruent: M=85.69, SD=8.29, 

incongruent: M=76.85, SD=9.71). The congruency effects ([congruent vs. incongruent]) were 

significant in both presentation modes (blocked: t(30)=5.87, p<.001, Cohen’s d= 1.06, mixed: 

t(30)=9.89, p<.001, Cohen’s d=1.78)  

3.2 Diameter in/congruent condition 

 The ANOVA showed a significant main effect of presentation mode (F(1,30)=6.72, 

p<.05, 𝜂𝜂𝑝𝑝2=.18), a significant main effect of congruency (F(1,30)=21.95, p<.001, 𝜂𝜂𝑝𝑝2=.42) and 

a significant interaction of presentation mode and congruency (F(1,30)=7.52, p<.05, 𝜂𝜂𝑝𝑝2=.20, 

see also Figure 4). The main effect of presentation mode was the result of better performance 

in the blocked (M=77.52, SD=1.68) than in the mixed presentation mode (M= 74.90, 

SD=1.73). The main effect of congruency was due to lower performance on congruent 

(M=64.80, SD=3.71) than on incongruent trials (M=87.62, SD=1.85). These results show that 

participants gave more correct responses when the array with more dot was associated with 

smaller visual cue (incongruent trials) which is in line with the results of the original study by 

Gebuis & Reynvoet (2012a). The interaction was again the result of a smaller congruency 
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effect in the blocked (congruent: M=67.55, SD=3.67, incongruent: M=87.60 SD=1.90) than in 

the mixed presentation mode (congruent: M=62.16 SD=3.93, incongruent: M=87.63, 

SD=1.96). Follow-up t-tests showed that the congruency effects ([congruent vs. incongruent]) 

were significant during both presentation modes (blocked: t(30)=-4.22, p<.001, Cohen’s d=-

.76, mixed: t(30)=-4.95, p<.001, Cohen’s d=-.89). 

3.3 Fully in/congruent condition 

 The ANOVA did not yield any significant results (presentation mode: F(1,30)=2.96, 

p=.10, 𝜂𝜂𝑝𝑝2=.09, congruency: F(1,30)=1.83, p=.19, 𝜂𝜂𝑝𝑝2=.06, presentation mode × congruency: 

F(1,30)=1.78, p=.19, 𝜂𝜂𝑝𝑝2=.06). T-tests on the congruency effects have not revealed any 

significant results either (blocked: t(30)=-.87, p=.39, Cohen’s d=-.16, mixed: t(30)=-1.6, 

p=.12, Cohen’s d=-.29). 

3.4 Partially in/congruent condition 

  The analysis conducted for the partially in/congruent condition revealed a significant 

main effect of congruency (F(1,30)=79.66, p<.001, 𝜂𝜂𝑝𝑝2=.73) and a significant interaction of 

presentation mode and congruency (F(1,30)=4.75, p<.05, 𝜂𝜂𝑝𝑝2=.14). The main effect of 

congruency was a result of lower performance on partially congruent trials (diameter 

congruent, convex hull incongruent), (M=49.56, SD=4.15) than on partially incongruent 

trials (diameter incongruent, convex hull congruent), (M=92.00, SD=1.16). Again, the 

interaction of presentation mode and congruency was due to an increase in congruency effect 

from blocked (congruent: M=50.47, SD=4.14; incongruent: M=91.03, SD=1.42) to mixed 

presentation mode (congruent: M=48.66, SD=4.29; incongruent: M=92.77, SD=1.06). The 

congruency effects were significant in both presentation modes (blocked: t(30)=-8.48, 

p<.001, Cohen’s d=-1.52, mixed: t(30)=-4.99, p<.001, Cohen’s d=-1.63 ) Altogether, these 

findings indicate that participants gave more correct responses, when the array with more 
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dots had a larger convex hull but smaller average diameter, aggregate surface and density 

(partially incongruent trials). This pattern of results corresponds to the original findings by 

Gebuis & Reynvoet (2012a). 

4. Discussion 

 The current study had two objectives. First, we examined whether changing the trial 

history by mixing trials of different types can alter the pattern of congruency effects shown 

by Gebuis & Reynvoet (2012a). Second, we were particularly interested in the reversed 

congruency effect in the diameter condition, when larger dots were estimated less numerous 

because this result is difficult to reconcile with findings from single-cell studies which would 

suggest the opposite (Nieder, 2016). We wanted to determine if the reversed diameter effect 

in the original study was merely a by-product of the block-wise presentation mode or whether 

it could be replicated when trials of different types are mixed together. For this purpose, we 

showed participants different trial types in a mixed fashion and compared it to the exact 

replication of the original study, where trials with different types of visual cue manipulation 

methods were presented in separate blocks.  

We replicated the pattern of congruency effects found by Gebuis & Reynvoet 

(2012a). As in the original study, the same numerosities were used in all visual cue 

conditions, so any difference between congruent and incongruent trials can only be attributed 

to how the visual cues were manipulated within that condition. In the convex hull 

in/congruent condition, performance was better on congruent trials, i.e. when the more 

numerous dot array occupied a larger area (other visual cues were equated). We were also 

able to replicate the reversed congruency effect in the diameter in/congruent condition. 

Performance was better on incongruent trials, when the array with more dots had smaller 

average diameter, smaller aggregate surface and smaller density (convex hull was equated). 
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When all visual cues were manipulated in the same direction in the fully in/congruent 

condition, no congruency effect was found. In the partially in/congruent condition, however, 

when the visual cues were manipulated in the opposite direction, the congruency effect 

increased. Gebuis & Reynvoet (2012a) draw the conclusion that when all visual cues are 

manipulated in the same direction (fully in/congruent condition), the opposite effects of 

convex hull and diameter results in an attenuated congruency effect. However, when convex 

hull and dot diameter are manipulated in different directions (partially in/congruent 

condition), an increase in the congruency effect is induced. Taken together, we were able to 

completely replicate these findings of Gebuis & Reynvoet (2012a), including the reversed 

congruency effect in the diameter in/congruent condition. In contrast to our study, other 

studies using the same method to generate non-symbolic stimuli, included only dot arrays of 

the fully and the partially in/congruent conditions (Gilmore et al., 2013; Gilmore, Cragg, 

Hogan, & Inglis, 2016; Leibovich, Vogel, Henik, & Ansari, 2016; Smets et al., 2015; Szucs, 

Nobes, Devine, Gabriel, & Gebuis, 2013). Hence, our study is the first to reproduce the 

congruency effect in the convex hull and the reversed congruency effect in the diameter 

in/congruent condition. 

We also compared performance and congruency effects between blocked and mixed 

presentation modes. As mentioned above, the pattern of congruency effects did not differ 

between them. However, congruency effects were greater when trials of different types were 

mixed together and this increase in congruency effect was significant in the convex hull, 

diameter and partially in/congruent conditions. It is important to note that these differences 

between the two presentation modes can only be attributed to how trials were presented to the 

participants (block-wise vs. mixed together), since the same dot arrays were shown during 

both tasks. The fact that the same pattern of congruency effects was found when trials of 

different types were mixed together supports the notion that convex hull and diameter have 
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opposite effects on numerosity processing. It also shows that this is a stable effect and not 

simply a byproduct of the block-wise stimulus presentation method. Moreover, the increased 

congruency effects demonstrate that reliance on visual cues became larger when trials of 

different types were mixed together. Taken together, these results support that continuous 

magnitudes play an important role in numerosity processing and indicate that their role is not 

as straightforward as previously thought.  

Specifically, it is noteworthy that whereas convex hull and numerosity are combined 

in a “greater is more” fashion, diameter and numerosity are combined in a “smaller is more” 

fashion. If the integration of numerosity and continuous magnitudes occurred on a basic 

neural level, one would expect a “greater is more” rule with all continuous magnitudes. It is 

possible that the reversed congruency effect in the diameter condition is a result of past 

experience and reflects a learning process about the relationship between numerical and non-

numerical parameters. In real life, there tends to be a negative correlation between item 

diameter and numerosity when other sensory cues are equal. For example, when one of two 

equal-sized baskets is filled with apples and the other one with peas, then there must be in 

total more pieces of peas than apples. It is possible that participants have learned this negative 

relationship between the size of the items and their numerosity and applied what they have 

learned in the experiment when comparing dot patterns. This hypothesis is supported by the 

stability of the reversed diameter effect: it is not only present across different trial 

presentation modes (blocked vs. mixed) but also across different dot generation protocols. In 

fact, the effect has been replicated by studies using the Panamath method for generating dot 

comparison stimuli (Clayton, Gilmore, & Inglis, 2015; Norris, Clayton, Gilmore, Inglis, & 

Castronovo, 2019). This is an important finding as some concerns have been raised about the 

replicability of findings in dot comparison tasks across different dot generation protocols 

(Inglis & Gilmore, 2014; Smets et al., 2015). There is only a single study in which larger dot 
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diameter increased (rather than decreased) perceived numerosity in dot patterns (Salti et al., 

2016). Yet, this contradiction can be resolved when one looks at the numerosity ranges used 

in this study. Whereas our study as well as all other studies finding a reversed diameter effect 

presented numerosities from the estimation range, Salti et al. (2016) used numerosities from 

the subitizing range (2-4). Thus, it seems that within subitizing range dot diameter is 

integrated during numerosity processing the same way as other continuous magnitudes and 

this pattern is reversed in the estimation range. This differential effect of diameter on 

numerosity judgements further supports the notion that numerosities in the estimation and 

subitizing ranges are processed differently (Feigenson et al., 2004; Hyde & Spelke, 2009, 

2011, 2012; Plodowski, Swainson, Jackson, Rorden, & Jackson, 2003). A possible 

explanation is that diameter is combined with numerosity in a “greater is more” fashion in the 

subitizing range which is in line with findings of single-cell studies while the reversed 

congruency effect (“smaller is more”) in the estimation range is possibly a result of past 

experience and reflects a learning process about the relationship between numerical and non-

numerical parameters. This possibility, that learning is crucial in the integration of visual cues 

and numerosity, has been raised by several researchers (Gebuis et al., 2016; Leibovich, 

Katzin, et al., 2016; Mix, Huttenlocher, & Levine, 2002).  

Whereas the overall pattern of congruency effects was identical in both presentation 

modes, we could show that the influence of continuous magnitudes on performance increased 

when different trial types were presented in a mixed fashion. When a trial was preceded by 

trials of different types (as during mixed presentation mode) participants relied more on 

sensory cues than they did when the trial was preceded by trials of the same type (as during 

blocked presentation mode). In terms of Sensory Integration Theory this finding can be 

interpreted as an increase in weights given to the continuous magnitudes. Thus, our results 

add to the growing body of evidence suggesting that these weights are dynamic and applied 
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in an adaptive and flexible way (Leibovich et al., 2015; Leibovich, Kallai, et al., 2016; 

Leibovich, Katzin, et al., 2016; Leibovich-Raveh et al., 2018). As mentioned before, different 

instructions, task difficulty, exposure duration and task context can alter the effect of 

continuous magnitudes on dot comparison performance. The differential effect of continuous 

magnitudes between blocked and mixed presentation modes in our study demonstrates that 

the weighing process depends not only on these factors but also on experiences participants 

have made with non-symbolic numerosities, including very recent ones in previous 

experimental trials.  

Sensory Integration Theory assumes that the process of weighing the different 

continuous magnitudes when estimating the number of dots in a pattern is essentially a 

perceptual one. It is also possible, however, that changing the trial history has an impact on 

numerosity processing at some point later in the processing line. Leibovich et al. (Leibovich, 

Kallai, et al., 2016; Leibovich, Katzin, et al., 2016) emphasize the role of cognitive control 

abilities in numerosity processing: integration is necessary to allow us to use the natural 

correlation between continuous magnitudes and numerosity (e.g. congruent trials) but 

inhibition is required to suppress our bias to process the visual cues when the natural 

correlations are violated (e.g. incongruent trials). Thus, any detrimental influence of the 

visual cues on numerosity judgements may be a result of a deficient inhibition process.  In 

line with this idea, studies found that both inhibition and integration play a role in numerosity 

processing (Cappelletti, Pikkat, Upstill, Speekenbrink, & Walsh, 2015; Clayton & Gilmore, 

2015; Fuhs & McNeil, 2013; Gilmore et al., 2013). An inhibition account of our results 

would suggest that it is more difficult to inhibit continuous magnitudes when different trial 

types are mixed together. The inhibition account may also provide an explanation for the 

reversed diameter effect: diameter is encoded the same way on the neuronal level as other 

continuous magnitudes but inhibition is required to overcome biases induced by dot size 
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when making numerosity comparisons. The exact role of inhibition should be further 

investigated possibly by testing individuals of different age groups that have different levels 

of inhibitory control.  

It should also be pointed out that the increased congruency effects during the mixed 

compared to the blocked presentation mode have practical implications. Dot comparison 

tasks are the most dominant methods to assess the acuity of the Approximate Number 

System. Although methods have been developed which aim to quantify and exclude the 

influence of visual cues on the ANS acuity measurement (DeWind, Adams, Platt, & Brannon, 

2015), our study shows that not only the visual cues but also the presentation method may 

increase the reliance on sensory properties. This in turn might lead to an incorrect estimation 

of the ANS acuity. Our data show that this might especially be problematic when trials of 

different types are mixed together (e.g. Fazio, Bailey, Thompson, & Siegler, 2014; Gomez et 

al., 2015; Tokita & Ishiguchi, 2013). Consequently, the intention of reducing the reliance of 

continuous magnitude by mixing trials of different visual cue manipulation might have, in 

turn, led to the exact opposite – namely that the reliance on them has increased.  

The role of continuous magnitudes in numerosity processing is a subject of debate in 

the current literature. Even though, very recent neurophysiological studies emphasize the 

superiority of numerosity over continuous magnitudes very early in the processing stream 

(Park, DeWind, Woldorff, & Brannon, 2015), studies investigating the role of continuous 

magnitudes – including the present one – confirm repeatedly, that these indeed have a great 

impact on numerosity judgements. How great and complex this impact might be, can be best 

illustrated by performance in the partial condition. When visual cues follow a specific 

pattern, performance is close to a ceiling effect (i.e. partially incongruent trials = convex hull 

congruent, diameter incongruent) but when visual cues are combined in the opposite manner, 

surprisingly performance drops close to chance level (i.e. partially congruent trials = convex 
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hull incongruent, diameter congruent). This pattern shows that visual cues have a massive 

effect on the perception of numerosities if they are manipulated in a certain manner. The fact 

that these same patterns of congruency effects were found during blocked and mixed 

presentation modes indicates that visual cues have a large and stable impact on numerosity 

judgments at some point in the processing line.  

In sum, our results further support the notion that people integrate various continuous 

magnitudes when making numerosity judgements. Moreover, this integration process seems 

to be complex and adaptive. It seems to depend not only on the type of continuous 

magnitudes but also on experiences participants have made with non-symbolic numerosities, 

including very recent ones in previous experimental trials.  It still needs to be investigated 

whether this process is essentially a perceptual one, that includes weighing of sensory cues, 

or whether higher-order processes, such as inhibition, are also involved.  
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Figures and figure legends 

 

Figure 1: Examples of congruent and incongruent trials. For each of the four conditions one 

congruent and one incongruent stimulus pair is shown. The more numerous stimulus is 

marked with grey border. 
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Figure 2: The difference in visual properties of all trials for each visual cue condition 

separately. Each panel depicts the difference in a certain visual property for the stimuli 

containing more dots relative to the stimuli containing less dots. They grey and the black bars 

represent the difference in visual properties of each number pair for the congruent and 

incongruent trials respectively, calculated as the visual cue of the larger number minus the 

visual cue of the smaller number. Error bars are displaying standard error of the mean. 
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Figure 3: Experimental design with timing information. 
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Figure 4: Performance (%) for each congruency and visual cue condition separately 

for the blocked and mixed presentation modes. In both presentation modes congruency 

effects were found in all conditions except the fully in/congruent condition. Light and dark 

grey bars represent congruent and incongruent trials, respectively. They also correspond to 

the light and dark grey bars in Figure 2. The asterisks represent significant results (padj < .05) 

Please note that partially congruent trials were congruent in diameter (as well as related 

visual cues) and incongruent in convex hull. Whereas, partially incongruent trials were 

incongruent in diameter (as well as related visual cues) and congruent in convex hull. Error 

bars are displaying standard error of the mean. 

 


